XSEDE and the NIST Digital Repository of Mathematical Formulae

Howard Cohl*, Marje McClain*, Bonita Saunders*, Moritz Schubotz§ Alex Danoff†, Jimmy Li‡, Jake Migdall§§, Amber Liu§§, Cherry Zou§§, (Azeem Mohammed§§, Shraeya Madhu§§)

*Applied and Computational Mathematics Division, NIST, Gaithersburg, Maryland, U.S.A. §Database Systems and Information Management Group, Technische Universität Berlin, Germany

> †Thomas S. Wootton High School, Rockville, MD ‡ Richard Montgomery High School, Rockville, MD §§Poolesville High School, Poolesville, MD

XSEDE Science Gateways Community Talk

August 29, 2014

(NIST) DRMF August 29, 2014 1 / 14

Digital Repository of Mathematical Formulae

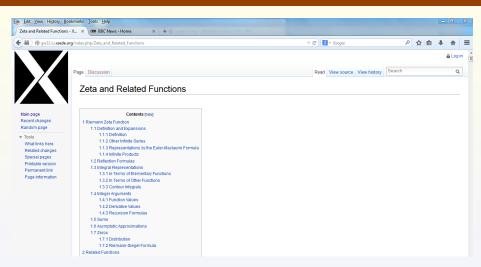
- Online compendium of mathematical formulae
 - orthogonal polynomial and special function formulae
- DRMF attempts to use Web 2.0 technologies to move beyond the static presentation of reference data to a platform that encourages community interaction and collaboration.
- DRMF utilization of DLMF LATEX macros
 - tie specific character sequences to well-defined mathematical objects.
 - Provides an internet link to standard, precise orthogonal polynomial and special function definitions through the DLMF and DRMF
- Uses **MediaWiki** Wiki software
 - MathML support
 - ETEXML
 - MathJax
- Demo, Development, and Server instances on XSEDE & WMF

DRMF goals

The **NIST Digital Repository of Mathematical Formulae** (DRMF) is designed for a mathematically literate audience and should:

- facilitate interaction among a community of mathematicians and scientists interested in compendia formulae data for orthogonal polynomials and special functions;
- 2 be expandable, allowing the input of new formulae from the literature;
- **3** represent the context-free full **semantic** information concerning individual formulas:
- 4 have a user friendly, consistent, and hyperlinkable viewpoint and authoring perspective;
- 5 contain easily searchable mathematics; and
- **16** take advantage of modern **MathML** tools for easy to read, scalably rendered content driven mathematics.

(NIST) DRMF August 29, 2014 3 / 14


DRMF Compendium Seeding Projects

Macro Replacement, Math OCR, and Wikitext generation

- DLMF LATEX Macro Replacement Project
 - KLS Hypergeometric Orthogonal Polynomials and Their q-Analogues
 - KLS addendum by Tom Koornwinder
 - Andrews, Askey & Roy : Special Functions
 - Ismail : Classical and Quantum Orthogonal Polynomials in 1 Variable
 - Wolfram Encoding Continued Fraction (eCF) Knowledge Project
- Mathematical OCR Project Alan Sexton, Birmingham
 - Bateman Manuscript Project : Higher Transcendental Functions, Tables of Integral Transforms
 - Byrd & Friedman's Handbook of Elliptic Integrals for Engineers and Scientists
- Wikitext generation Project
 - NIST Digital Library of Mathematical Functions (ch. 25): 170 formulas

(NIST) DRMF August 29, 2014 4 / 1

DRMF Zeta and Related Functions Page

DRMF Zeta and Related Functions Page (cont.)

$$\zeta(s) = \frac{(2\pi)^2 e^{-\gamma r(\gamma/2)}}{2(s-1)\Gamma(\frac{d}{2}\pi+1)} \prod_{p} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}$$

$$\text{Constraint(s): product over zeros } \rho \text{ of } \zeta \text{ with } \Re \rho > 0$$

$$\text{Reflection Formulas}$$

$$\zeta(1-s) = 2(2\pi)^{-\gamma} \cos\left(\frac{1}{2}\pi s\right) \Gamma(s) \zeta(s)$$

$$\text{Constraint(s): } s \neq 0, 1$$

$$\zeta(s) = 2(2\pi)^{-\gamma} - \sin\left(\frac{1}{2}\pi s\right) \Gamma(s) \zeta(s)$$

$$\zeta(s) = 2(2\pi)^{-\gamma} - \sin\left(\frac{1}{2}\pi s\right) \Gamma(s) \zeta(s)$$

$$\zeta(s) = \zeta(s-1) \Gamma(\frac{1}{2}s) \pi^{-1/2} \zeta(s)$$

$$\zeta(s) = \zeta(s-1) \Gamma(\frac{1}{2}s) \pi^{-1/2} \zeta(s)$$

$$\zeta(s) = \frac{1}{2} \pi (s-1) \Gamma(s) \Gamma(s)$$

$$\zeta(s) = \frac{1}{2} \pi (s-1) \Gamma(s) \Gamma(s)$$

$$\zeta(s) = \frac{1}{2} \pi (s-1) \Gamma(s) \Gamma(s)$$

$$\zeta(s) = \frac{1}{2} \pi (s-1) \Gamma(s$$

(NIST) DRMF August 29, 2014 6 / 14

DLMF macros provide semantic content in formulas

- DLMF OPSF Macros via LATEXML-server
 - 546 **semantic DLMF** LATEX **OPSF** macros
 - additional 49 semantic DRMF LATEX macros
- Objects: \sum, \int, \deriv{f}{x}, \qderiv[n]{q}@{z}
- Constants: \expe,\iunit,\cpi,\EulerConstant
- Special Functions and Orthogonal Polynomials

```
\Gamma(z) \qquad \text{LegendreQ[z]} \qquad \text{http://dlmf.nist.gov/5.30\#E1} \\ J_{\nu}(z) \qquad \text{BesselJ{nu}@{z}} \qquad \text{http://dlmf.nist.gov/10.2\#E2} \\ Q^{\mu}_{\nu}(z) \qquad \text{LegendreQ[[nu]{nu}@{z}:} \qquad \text{http://dlmf.nist.gov/14.3\#E7} \\ P^{(\alpha,\beta)}_{n}(x) \qquad \text{JacobiP{alpha}{beta}{n}@{x}} \qquad \text{http://dlmf.nist.gov/18.3\#T1.t1.r3} \\ \end{array}
```

(NIST) DRMF August 29, 2014 7 / 14

Formula Home Pages

- Whereas Wikipedia and other web authoring tools manifest notions or descriptions as first class objects, the DRMF does that with mathematical formulae.
- DRMF provides for each formula, a formula home page:
 - Rendered description of the formula (required);
 - Constraints the formula must obey;
 - Substitutions required to understand formula;
 - Bibliographic citation (required);
 - Open section for proofs (required) DLMF;
 - **6 List of symbols** and **links** to definitions (required) *DLMF macros*;
 - 7 Open section for **notes** connections between formulas; and
 - 8 Open section for **external links** *computer generated proofs*;

(NIST) DRMF August 29, 2014 8 / 14

Sample formula home page

Further questions

- How does one facilitate effective community interaction & contribution with such a resource?
 - implement a high degree of **computer verification** of community input
 - ensure a degree of moderation in the Wiki
- Can one build a piece of intelligent software which is able to
 - scan in books;
 - produce LATEX source;
 - replace commands for functions in the source with semantic macros;
 - extract data from the text (such as constraints)
 - associate data with relevant formulae and removes text;
 - produce Wikitext;
 - and upload Wikitext to a publicly accessible website?
- How does one **search** the resulting mathematical database?

(NIST) DRMF August 29, 2014 10 / 14

Ongoing projects to investigate the above questions

- Macro replacements from well-constructed LATEX source
- Extraction of mathematical data from text (keywords)
- Wikitext generation
- Porting/building a mathematical search engine in MediaWiki
- Output of formula data from right-clickable menus in a variety of formats so that formulas can be used and also verified
 - LATEX expanded
 - LATEX semantic
 - presentation MathML
 - content MathML
 - Mathematica
 - Maple
 - Sage

Virtual Machine Instances:

- XSEDE project (quarry) instances
 - 2 XSEDE CentOS: Demo and Deployment
 - 2 XSEDE Ubuntu server: LETEXML, Mathoid
- Wikimedia Foundation (WMF) Ubuntu instances
 - 3 WMF Vagrant student Development instances
 - 1 WMF Vagrant Deployment instance

Past/Present/Related development team members

- Moritz Schubotz (TU-Berlin): MediaWiki Math
- Past/Present High School Students:
 - Jake Migdall: MathJax menu
 - Alex Danoff: seeding/macro replacement
 - Amber Liu : MathJax menu customization
 - Cherry Zou : seeding/macro replacement
 - Jimmy Li: mathematical search
 - (Azeem Mohammed : LATEX to Wikitext)
 - (Shraeya Madhu: Seeding Project)
- [Bruce Miller (NIST) : (DLMF macros/Search)]
- [Abdou Youssef (NIST) : (DLMF Math Search)]

(NIST) DRMF August 29, 2014 13 / 14

Ongoing project: Content MathML

- Presentation MathML → Content MathML
 - LETEXML generates presentation MathML and Content MathML (DLMF macros) [symbol interaction]
- How can we improve the Content MathML?
- Resolve **ambiguities** associated with:
 - Superscipts/subscripts, e.g., x^0
 - Sums/products/integrals/limits, e.g., $\sum_{n=0}^{\infty} f(n)$
 - Multiplication/function application, e.g., f(a + b)
 - **Prime** notation (variable vs. derivative), e.g., f'(a+b)
- Content Dictionaries w/links to macros and mathematical definitions (e.g., DLMF)
- Phrase Books translate between different syntaxes
- Example: LATEX → Mathematica → Wikitext (while maintaining Content MathML)

(NIST) DRMF August 29, 2014 14 / 14